estimation.rwolf
='wild-bootstrap') estimation.rwolf(models, param, reps, seed, sampling_method
Compute Romano-Wolf adjusted p-values for multiple hypothesis testing.
For each model, it is assumed that tests to adjust are of the form “param = 0”. This function uses the wildboottest()
method for running the bootstrap, hence models of type Feiv
or Fepois
are not supported.
Parameters
Name | Type | Description | Default |
---|---|---|---|
models | list[Feols] or FixestMulti | A list of models for which the p-values should be computed, or a FixestMulti object. Models of type Feiv or Fepois are not supported. |
required |
param | str | The parameter for which the p-values should be computed. | required |
reps | int | The number of bootstrap replications. | required |
seed | int | The seed for the random number generator. | required |
sampling_method | str | Sampling method for computing resampled statistics. Users can choose either bootstrap(‘wild-bootstrap’) or randomization inference(‘ri’) | 'wild-bootstrap' |
Returns
Name | Type | Description |
---|---|---|
pd.DataFrame | A DataFrame containing estimation statistics, including the Romano-Wolf adjusted p-values. |
Examples
from pyfixest.estimation import feols
from pyfixest.utils import get_data
from pyfixest.multcomp import rwolf
= get_data().dropna()
data = feols("Y ~ Y2 + X1 + X2", data=data)
fit "X1", reps=9999, seed=123)
rwolf(fit.to_list(),
= feols("Y ~ X1", data=data)
fit1 = feols("Y ~ X1 + X2", data=data)
fit2 = rwolf([fit1, fit2], "X1", reps=9999, seed=123)
rwolf_df rwolf_df