estimation.model_matrix_fixest
estimation.model_matrix_fixest(
FixestFormula
data=False
drop_singletons=None
weights=False
drop_intercept )
Create model matrices for fixed effects estimation.
This function processes the data and then calls formulaic.Formula.get_model_matrix()
to create the model matrices.
Parameters
Name | Type | Description | Default |
---|---|---|---|
FixestFormula | A pyfixest.estimation.FormulaParser.FixestFormula object | that contains information on the model formula, the formula of the first and second stage, dependent variable, covariates, fixed effects, endogenous variables (if any), and instruments (if any). | required |
data | pd.DataFrame | The input DataFrame containing the data. | required |
drop_singletons | bool | Whether to drop singleton fixed effects. Default is False. | False |
weights | str or None | A string specifying the name of the weights column in data . Default is None. |
None |
data | pd.DataFrame | The input DataFrame containing the data. | required |
drop_intercept | bool | Whether to drop the intercept from the model matrix. Default is False. If True, the intercept is dropped ex post from the model matrix created by formulaic. | False |
Returns
Name | Type | Description |
---|---|---|
dict | A dictionary with the following keys and value types: - ‘Y’ : pd.DataFrame The dependent variable. - ‘X’ : pd.DataFrame The Design Matrix. - ‘fe’ : Optional[pd.DataFrame] The model’s fixed effects. None if not applicable. - ‘endogvar’ : Optional[pd.DataFrame] The model’s endogenous variable(s), None if not applicable. - ‘Z’ : np.ndarray The model’s set of instruments (exogenous covariates plus instruments). None if not applicable. - ‘weights_df’ : Optional[pd.DataFrame] DataFrame containing weights, None if weights are not used. - ‘na_index’ : np.ndarray Array indicating rows droppled beause of NA values or singleton fixed effects. - ‘na_index_str’ : str String representation of ‘na_index’. - ’_icovars’ : Optional[list[str]] List of variables interacted with i() syntax, None if not applicable. - ‘X_is_empty’ : bool Flag indicating whether X is empty. |