did.estimation.event_study

did.estimation.event_study(
    data
    yname
    idname
    tname
    gname
    xfml=None
    estimator='twfe'
    att=True
    cluster='idname'
)

Estimate Event Study Model.

This function allows for the estimation of treatment effects using different estimators. Currently, it supports “twfe” for the two-way fixed effects estimator and “did2s” for Gardner’s two-step DID2S estimator. Other estimators are in development.

Parameters

Name Type Description Default
data DataFrame The DataFrame containing all variables. required
yname str The name of the dependent variable. required
idname str The name of the id variable. required
tname str Variable name for calendar period. required
gname str Unit-specific time of initial treatment. required
xfml str The formula for the covariates. None
estimator str The estimator to use. Options are “did2s” and “twfe”. 'twfe'
att bool If True, estimates the average treatment effect on the treated (ATT). If False, estimates the canonical event study design with all leads and lags. Default is True. True
cluster Optional[str] The name of the cluster variable. 'idname'

Returns

Name Type Description
object A fitted model object of class [Feols(/reference/Feols.qmd).

Examples

import pandas as pd
import pyfixest as pf

url = "https://raw.githubusercontent.com/py-econometrics/pyfixest/master/pyfixest/did/data/df_het.csv"
df_het = pd.read_csv(url)

fit_twfe = pf.event_study(
    df_het,
    yname="dep_var",
    idname="unit",
    tname="year",
    gname="g",
    estimator="twfe",
    att=True,
)

fit_twfe.tidy()
Estimate Std. Error t value Pr(>|t|) 2.5% 97.5%
Coefficient
ATT 1.98254 0.019093 103.83491 0.0 1.945088 2.019993