estimation.feols_compressed_.FeolsCompressed

estimation.feols_compressed_.FeolsCompressed(
    self,
    FixestFormula,
    data,
    ssc_dict,
    drop_singletons,
    drop_intercept,
    weights,
    weights_type,
    collin_tol,
    fixef_tol,
    lookup_demeaned_data,
    solver,
    demeaner_backend='numba',
    store_data=True,
    copy_data=True,
    lean=False,
    context=0,
    reps=100,
    seed=None,
    sample_split_var=None,
    sample_split_value=None,
)

Non-user-facing class for compressed regression with fixed effects.

See the paper “You only compress once” by Wong et al (https://arxiv.org/abs/2102.11297) for details on regression compression.

Parameters

Name Type Description Default
FixestFormula FixestFormula The formula object. required
data pd.DataFrame The data. required
ssc_dict dict[str, Union[str, bool]] The ssc dictionary. required
drop_singletons bool Whether to drop columns with singleton fixed effects. required
drop_intercept bool Whether to include an intercept. required
weights Optional[str] The column name of the weights. None if no weights are used. For this method, weights needs to be None. required
weights_type Optional[str] The type of weights. For this method, weights_type needs to be ‘fweights’. required
collin_tol float The tolerance level for collinearity. required
fixef_tol float The tolerance level for the fixed effects. required
lookup_demeaned_data dict[str, pd.DataFrame] The lookup table for demeaned data. required
solver str The solver to use. required
store_data bool Whether to store the data. True
copy_data bool Whether to copy the data. True
lean bool Whether to keep memory-heavy objects as attributes or not. False
context int or Mapping[str, Any] A dictionary containing additional context variables to be used by formulaic during the creation of the model matrix. This can include custom factorization functions, transformations, or any other variables that need to be available in the formula environment. 0
reps int The number of bootstrap repetitions. Default is 100. Only used for CRV1 inference, where a wild cluster bootstrap is used. 100
seed Optional[int] The seed for the random number generator. Only relevant for CRV1 inference, where a wild cluster bootstrap is used. None

Methods

Name Description
predict Compute predicted values.
prepare_model_matrix Prepare model inputs for estimation.
vcov Compute the variance-covariance matrix for the compressed regression.

predict

estimation.feols_compressed_.FeolsCompressed.predict(
    newdata=None,
    atol=1e-06,
    btol=1e-06,
    type='link',
)

Compute predicted values.

Parameters

Name Type Description Default
newdata Optional[DataFrameType] The new data. If None, makes a prediction based on the uncompressed data set. None
atol float The absolute tolerance. 1e-06
btol float The relative tolerance. 1e-06
type str The type of prediction. 'link'

Returns

Name Type Description
np.ndarray The predicted values. If newdata is None, the predicted values are based on the uncompressed data set.

prepare_model_matrix

estimation.feols_compressed_.FeolsCompressed.prepare_model_matrix()

Prepare model inputs for estimation.

vcov

estimation.feols_compressed_.FeolsCompressed.vcov(vcov, data=None)

Compute the variance-covariance matrix for the compressed regression.