did.estimation.lpdid

did.estimation.lpdid(
    data
    yname
    idname
    tname
    gname
    vcov=None
    pre_window=None
    post_window=None
    never_treated=0
    att=True
    xfml=None
)

Local projections approach to estimation.

Estimate a Difference-in-Differences / Event Study Model via the Local Projections Approach.

Parameters

Name Type Description Default
data DataFrame The DataFrame containing all variables. required
yname str The name of the dependent variable. required
idname str The name of the id variable. required
tname str Variable name for calendar period. required
gname str Unit-specific time of initial treatment. required
vcov (str, dict) The type of inference to employ. Defaults to {“CRV1”: idname}. Options include “iid”, “hetero”, or a dictionary like {“CRV1”: idname}. None
pre_window int The number of periods before the treatment to include in the estimation. Default is the minimum relative year in the data. None
post_window int The number of periods after the treatment to include in the estimation. Default is the maximum relative year in the data. None
never_treated int Value in gname indicating units never treated. Default is 0. 0
att bool If True, estimates the pooled average treatment effect on the treated (ATT). Default is False. True
xfml str Formula for the covariates. Not yet supported. None

Returns

Name Type Description
DataFrame A DataFrame with the estimated coefficients.

Examples

import pandas as pd
import pyfixest as pf

url = "https://raw.githubusercontent.com/py-econometrics/pyfixest/master/pyfixest/did/data/df_het.csv"
df_het = pd.read_csv(url)

fit = pf.lpdid(
    df_het,
    yname="dep_var",
    idname="unit",
    tname="year",
    gname="g",
    vcov={"CRV1": "state"},
    pre_window=-20,
    post_window=20,
    att=False
)

fit.tidy().head()
fit.iplot(figsize= [1200, 400], coord_flip=False).show()

To get the ATT, set att=True:

fit = pf.lpdid(
    df_het,
    yname="dep_var",
    idname="unit",
    tname="year",
    gname="g",
    vcov={"CRV1": "state"},
    pre_window=-20,
    post_window=20,
    att=True
)
fit.tidy()
Estimate Std. Error t value Pr(>|t|) 2.5% 97.5% N
treat_diff 2.506746 0.071357 35.129648 0.0 2.362413 2.65108 5716.0