estimation.bonferroni

estimation.bonferroni(models, param)

Compute Bonferroni adjusted p-values for multiple hypothesis testing.

For each model, it is assumed that tests to adjust are of the form “param = 0”.

Parameters

Name Type Description Default
models A supported model object (Feols, Fepois, Feiv, FixestMulti) or a list of Feols, Fepois & Feiv models. required
param str The parameter for which the p-values should be adjusted. required

Returns

Name Type Description
pd.DataFrame A DataFrame containing estimation statistics, including the Bonferroni adjusted p-values.

Examples

import pyfixest as pf
from pyfixest.utils import get_data

data = get_data().dropna()
fit1 = pf.feols("Y ~ X1", data=data)
fit2 = pf.feols("Y ~ X1 + X2", data=data)
bonf_df = pf.bonferroni([fit1, fit2], param="X1")
bonf_df
est0 est1
Estimate -1.001930 -0.995197
Std. Error 0.084823 0.082194
t value -11.811964 -12.107957
Pr(>|t|) 0.000000 0.000000
2.5% -1.168383 -1.156490
97.5% -0.835476 -0.833904
Bonferroni Pr(>|t|) 0.000000 0.000000